CORRIGENDUM

Nonlinear dynamics of capillary bridges: theory

BY TAY-YUAN CHEN and JOHN TSAMOPOULOS

Journal of Fluid Mechanics, vol. 255 (1993), pp. 373-409

Owing to a printing error all the sizes of the arrows on figures 8, 13, and 16 that indicate the scale for the velocity vectors have length equal to 3 mm. This is incorrect. The corrected lengths are listed in the following table.

Correct length			Correct length		Correct length	
Figure	in mm	Figure	in mm	Figure	in mm	
8.1	3.0	13.1	3.0	16.1	3.4	
8.2	3.3	13.2	3.4	16.2	3.2	
8.3	3.0	13.3	3.1	16.3	3.1	
8.4	3.5	13.4	3.4	16.4	5.9	
8.5	3.6	13.5	6.0	16.5	6.4	
8.6	4.6	13.6	2.8	16.6	6.3	
8.7	3.6	13.7	3.8	16.7	3.2	
8.8	3.2	13.8	3.9	16.8	4.8	
8.9	3.4	13.9	3.8			
8.10	3.3	13.10	5.0			
8.11	5.1	13.11	2.9			
8.12	3.2	13.12	3.5			

Furthermore, the arrows in figure 9 are also incorrect and the first plot in it has been inadvertently substituted by another one. For this reason figure 9 is reproduced overleaf.

FIGURE 9 (Corrected). (a) Velocity field of first mode calculated using inviscid analysis, $\Lambda = 1.2/\pi$ and $\sigma = 1.921$, and magnification of the flow field at the bottom of a bridge with Re = 30, $\Lambda = 1/\pi$, $\alpha = 0.2$ and $\sigma = 1.117$ at (b) t = 3.142 and (c) t = 5.619.